Force depression in single myofibrils.
نویسندگان
چکیده
Force depression after active shortening has been observed in different muscle preparations. It has been assumed that force depression is caused by the development of sarcomere length nonuniformities after shortening. However, this hypothesis has never been investigated in a preparation where individual sarcomere lengths could be directly measured. Here, we investigated force depression in single myofibrils (n = 11) and tracked simultaneously the changes in individual sarcomere lengths (n = 60) before, during, and after shortening and after a purely isometric contraction performed at the final length. Shortening produced force depression in all myofibrils (mean +/- SE; 30.9 +/- 3.9%). During shortening, all sarcomeres shortened, but not by the same amount. Sarcomere lengths were nonuniform, with the same mean SD before (0.11 +/- 0.06 microm) and after shortening (0.11 +/- 0.06 microm) and after a purely isometric contraction at the final length (0.10 +/- 0.05 microm). Furthermore, greater shortening magnitudes were found for sarcomeres that were long in the initial isometric configuration. Nonuniformities of half-sarcomere lengths were also the same before (SD = 0.13 microm) and after (SD = 0.14 microm) shortening. We conclude from these results that the development of sarcomere (or half-sarcomere) length nonuniformities does not play a major role in force depression. Rather, force depression seems an intrinsic property of individual (half-) sarcomeres and muscle contraction.
منابع مشابه
Residual force depression in single sarcomeres is abolished by MgADP-induced activation
The mechanisms behind the shortening-induced force depression commonly observed in skeletal muscles remain unclear, but have been associated with sarcomere length non-uniformity and/or crossbridge inhibition. The purpose of this study was twofold: (i) to evaluate if force depression is present in isolated single sarcomeres, a preparation that eliminates sarcomere length non-uniformities and (ii...
متن کاملHistory-dependent properties of skeletal muscle myofibrils contracting along the ascending limb of the force-length relationship.
There is a history dependence of skeletal muscle contraction: stretching activated muscles induces a long-lasting force enhancement, while shortening activated muscles induces a long-lasting force depression. These history-dependent properties cannot be explained by the current model of muscle contraction, and its mechanism is unknown. The purposes of this study were (i) to evaluate if force en...
متن کاملResidual force enhancement in myofibrils and sarcomeres.
Residual force enhancement has been observed following active stretch of skeletal muscles and single fibres. However, there has been intense debate whether force enhancement is a sarcomeric property, or is associated with sarcomere length instability and the associated development of non-uniformities. Here, we studied force enhancement for the first time in isolated myofibrils (n=18) that, owin...
متن کاملThe origin of passive force enhancement in skeletal muscle.
The aim of the present study was to test whether titin is a calcium-dependent spring and whether it is the source of the passive force enhancement observed in muscle and single fiber preparations. We measured passive force enhancement in troponin C (TnC)-depleted myofibrils in which active force production was completely eliminated. The TnC-depleted construct allowed for the investigation of th...
متن کاملRadial stiffness characteristics of the overlap regions of sarcomeres in isolated skeletal myofibrils in pre-force generating state
We have studied the stiffness of myofilament lattice in sarcomeres in the pre-force generating state, which was realized by a relaxing reagent, BDM (butane dione monoxime). First, the radial stiffness for the overlap regions of sarcomeres of isolated single myofibrils was estimated from the resulting decreases in diameter by osmotic pressure applied with the addition of Dextran. Then, the radia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 108 2 شماره
صفحات -
تاریخ انتشار 2010